If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7m2 + 3m + -8 = 0 Reorder the terms: -8 + 3m + 7m2 = 0 Solving -8 + 3m + 7m2 = 0 Solving for variable 'm'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. -1.142857143 + 0.4285714286m + m2 = 0 Move the constant term to the right: Add '1.142857143' to each side of the equation. -1.142857143 + 0.4285714286m + 1.142857143 + m2 = 0 + 1.142857143 Reorder the terms: -1.142857143 + 1.142857143 + 0.4285714286m + m2 = 0 + 1.142857143 Combine like terms: -1.142857143 + 1.142857143 = 0.000000000 0.000000000 + 0.4285714286m + m2 = 0 + 1.142857143 0.4285714286m + m2 = 0 + 1.142857143 Combine like terms: 0 + 1.142857143 = 1.142857143 0.4285714286m + m2 = 1.142857143 The m term is 0.4285714286m. Take half its coefficient (0.2142857143). Square it (0.04591836735) and add it to both sides. Add '0.04591836735' to each side of the equation. 0.4285714286m + 0.04591836735 + m2 = 1.142857143 + 0.04591836735 Reorder the terms: 0.04591836735 + 0.4285714286m + m2 = 1.142857143 + 0.04591836735 Combine like terms: 1.142857143 + 0.04591836735 = 1.18877551035 0.04591836735 + 0.4285714286m + m2 = 1.18877551035 Factor a perfect square on the left side: (m + 0.2142857143)(m + 0.2142857143) = 1.18877551035 Calculate the square root of the right side: 1.090309823 Break this problem into two subproblems by setting (m + 0.2142857143) equal to 1.090309823 and -1.090309823.Subproblem 1
m + 0.2142857143 = 1.090309823 Simplifying m + 0.2142857143 = 1.090309823 Reorder the terms: 0.2142857143 + m = 1.090309823 Solving 0.2142857143 + m = 1.090309823 Solving for variable 'm'. Move all terms containing m to the left, all other terms to the right. Add '-0.2142857143' to each side of the equation. 0.2142857143 + -0.2142857143 + m = 1.090309823 + -0.2142857143 Combine like terms: 0.2142857143 + -0.2142857143 = 0.0000000000 0.0000000000 + m = 1.090309823 + -0.2142857143 m = 1.090309823 + -0.2142857143 Combine like terms: 1.090309823 + -0.2142857143 = 0.8760241087 m = 0.8760241087 Simplifying m = 0.8760241087Subproblem 2
m + 0.2142857143 = -1.090309823 Simplifying m + 0.2142857143 = -1.090309823 Reorder the terms: 0.2142857143 + m = -1.090309823 Solving 0.2142857143 + m = -1.090309823 Solving for variable 'm'. Move all terms containing m to the left, all other terms to the right. Add '-0.2142857143' to each side of the equation. 0.2142857143 + -0.2142857143 + m = -1.090309823 + -0.2142857143 Combine like terms: 0.2142857143 + -0.2142857143 = 0.0000000000 0.0000000000 + m = -1.090309823 + -0.2142857143 m = -1.090309823 + -0.2142857143 Combine like terms: -1.090309823 + -0.2142857143 = -1.3045955373 m = -1.3045955373 Simplifying m = -1.3045955373Solution
The solution to the problem is based on the solutions from the subproblems. m = {0.8760241087, -1.3045955373}
| T=8x+2 | | 0.75*3= | | (5y-10)/(5y+10)=0 | | -4u^2+8u-4=0 | | 4x-3+2x=8x-9 | | 2t-(-4)=-2 | | 19x-5y=-23 | | x+11+13=209 | | 3[4(x-7)+2(x-1)]=2(5x+3) | | 4.73x+9.46=18.92 | | 3x-1=-33+7x | | 14+b=5-2b | | 5g^2-3=0 | | x^(4/3)-13x^(2/3)+40=0 | | (3/8f)+1/2=6((1/16)f)-3 | | -2a^2(a-3a^2+2ab)= | | -v+18=2 | | 23=-4m+2m+m | | 3(2x-5)=6x+15 | | 11+n/3=14 | | x-15/21=266/7 | | 15=8x+3-4x | | 2[(3x+5)-7]=3(5x-2) | | 4t^2+8t+4=0 | | 0.4(x+3)=6 | | 138=6-12x | | Y-4wheny=19 | | 10x-280=8x-120 | | -3s^2+6s-3=0 | | -3+8y=5 | | 1+7k=-27 | | -4e+1=9 |